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Abstract 

Formulas are derived extending several semi-empirical 
absorption-correction methods to diffractometers 
operating in Weissenberg geometries, with particular 
attention paid to flat-cone geometry. These formulas 
are useful for a variety of instruments using both area 
and linear position-sensitive detectors. While a complete 
data set can sometimes be corrected using a single 
absorption reflection, it was found that the best 
corrections are usually obtained by considering two 
absorption reflections rather than one. A discussion of 
the optimum choice of absorption correction when a 
crystal has at least a twofold symmetry axis is presented. 
The accuracy of the methods and the limits of applic- 
ability have been examined by computer simulations. 

Introduction 

Intensities observed in X-ray and neutron single-crystal 
diffraction experiments will be, in most cases, signifi- 
cantly modified by absorption. For a typical protein 
crystal of size 1 x 0.5 x 0.5 mm and/~ = 1.0 mm -l,  
transmission of X-rays varies between 69 and 48%. 
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The same range of transmission is observed with 
neutrons in a crystal which has/~ = 0.25 mm -1 and is 
four times as large in each dimension. The methods for 
evaluation of the absorption correction that are based 
on accurate measurements of external dimensions of 
the crystals (Busing & Levy, 1957; Coppens, 
Leiserowitz & Rabinovich, 1965; de Meulenaer & 
Tompa, 1965; Wells, 1960; Santoro, 1969) are seldom 
applicable to crystals of proteins and other macro- 
molecules, owing to the usually complex shape of the 
sample and mounting. While semi-empirical corrections 
have been used successfully in macromolecular crystal- 
lography, their application has been described so far 
only for the geometries of three- and four-circle diffrac- 
tometers, linear diffractometers (Arndt & Phillips, 1961) 
and five-circle diffractometers (Banner, Evans, Marsh 
& Phillips, 1977). Recently, considerable gains in the 
speed of data collection have been achieved by the use 
of area detectors (Xuong, Freer, Hamlin, Nielsen & 
Vernon, 1978) and linear detectors (Cain, Norvell & 
Schoenborn, 1975; Prince, Wlodawer & Santoro, 1978). 
Since these diffractometers measure the reflections with 
one of the Weissenberg geometries, such as normal- 
beam or fiat-cone (Buerger, 1942), it seems desirable to 
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generalize and extend the existing semi-empirical 
absorption-correction methods to these cases. 

The immediate aim of our work was to provide 
formulas and procedures for the absorption-correction 
measurement for a flat-cone diffractometer equipped 
with a linear position-sensitive detector (Prince, 
Wlodawer & Santoro, 1978). The formulas derived 
below are, however, completely general and should be 
equally applicable to diffractometers equipped with 
linear or area detectors and operating with the normal- 
beam geometry (Cain, Norvell & Schoenborn, 1975; 
Xuong et al., 1978) or indeed with any arbitrary 
Weissenberg configuration. 

Summary of existing methods 

Let us consider a reciprocal-lattice point 

h= . (I) 

The Bragg condition for h can be satisfied by orienting 
the crystal with respect to the primary beam in an 
infinite number of ways. The rotations required to 
achieve any of these orientations depend on several 
factors (lattice parameters and initial crystal orien- 
tation, technique being used, azimuth of the reflecting 
planes at which the measurement is to be made, etc.), 
but they can always be expressed in terms of the three 
Eulerian angles co, 2~, ~P. The observed intensity of h, 
because of absorption, is related to its true intensity 
I0(h) by the equation 

lobs(h, co,Z, tp) = T(h, co, Z,~o)lo(h), (2) 

where T(h,co,Z,~0) is the transmission factor. It has been 
shown (Flack, 1974) that T(h, co,Z, tp) can be split into 
two factors according to the expression 

T(h, co,X, tp) = T '  (h, co,Z, tp) ( T(h, co,Z,¢p))20, (3) 

where 

( T(h, co,Zdo))2o = S(#r,2O) 

2~t 2~ 2~t 
1 f f f T(h, co,Z,~o)dwdxdtP (4) 

0 0 0 

and where the subscript 20 indicates that (T(h ,  co,Z,q~) ) 
is a function of 20 only. It has also been shown (Flack, 
1974) that the factor T '  is shape dependent. 

The approximation most commonly adopted for the 
20-dependent factor is the spherical correction; i.e. it is 
assumed that the variation of ( T )  with 20, for any 
given linear absorption coefficient g, is the same as that 
of a sphere whose radius is related in some way to the 
volume or to the linear dimensions of the crystal under 
study. We may write then 

(5) 

Fig. 1. Method of NPM for the equi-inclination geometry. The 
rotation axis of the crystal is perpendicular to the plane of the 
figure at O. P(h) and D(h) are the primary and diffracted beams 
of the reflection h under study, corresponding to the reciprocal 
node B. P'(k) and D'(k) and P"(k) and D"(k) are the projections 
on the absorption plane of the primary and diffracted beams of 
the absorption reflection k for the two orientations of the crystal 
for which the intensities Ii(k) and I2(k) are measured (see tex0. 

and, since S is known and tabulated (International 
Tables for X-ray Crystallography, 1959), the out- 
standing problem is the determination of T'(h,co,Z, tp). 
This quantity may be evaluated empirically from the 
intensities of several standard reflections k, each 
measured at regular intervals of the angle ~u of the 
rotation about the corresponding scattering vector. For  
simplicity in this paper, we will call absorption 
reflections the reflections k selected for the correction; 
absorption curve the curve describing the variation of 
intensity of k as a function of ~u; and absorption plane 
the plane perpendicular to the central reciprocal row on 
which k is located. 

The procedures proposed so far for the empirical 
evaluation of T '  can be summarized as follows. 

(A) Method of North, Phillips & Mathews (1968) 

In this method (designated NPM),  T '  is approxi- 
mated by the expression 

T'(h,w,Z,q~) ~ I ,(k)  + I2(k) C, (6) 
21max(k) 

where 1max(k) is the maximum intensity observed on the 
absorption curve of k. I i(k) [=--I(k, col,Z~,~01)] and I2(k) 
[ - I (k ,  co2,Z2,f0z)] are the intensities of k measured for 
those orientations of the crystal for which the mean 
directions* of k are coincident with the projections~f of 
the incident and diffracted beams of the reflection h, 
respectively (Fig. 1). In the Weissenberg methods, and 

* We designate as mean direction of a reflection the resultant of 
the unit vectors along incident and diffracted beams. 

I" Unless otherwise indicated, as projection of a vector we indicate 
the projection of the vector on the absorption plane. 
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in those methods which have similar geometry (Phillips, 
1964), k is chosen so that the corresponding reciprocal- 
lattice point lies on the rotation axis of the crystal, if this 
is coincident with a reciprocal row, or on a reciprocal 
row as close as possible to the rotation axis, and so that 
h and k lie on the same level (the levels considered here 
are those perpendicular to the rotation axis). As noted 
by NPM, the transmission factor (6) is evaluated 
relative to the direction of least absorption in any one 
level. Consequently, the intensities in one level differ 
from those in another by a constant factor, the unknown 
ratio between the minimum absorptions suffered by the 
two axial reflections. This factor is taken into consider- 
ation in (6) by the scale factor C, constant for each 
level. 

Equation (6) is an extension of the simplified (and 
less accurate) expression for T' proposed originally by 
Furnas (1957): 

T'(h,w,X,~p) ~-- [Im(k)/Imax(k)l C, (7) 

where Im(k) is the intensity of the absorption reflection 
k measured for that orientation of the crystal for which 
the mean direction of k is coincident with the mean 
direction of h. 

(B) Method of Kopfman & Huber (1968) 

In this method (designated KH), 

T'(k,m,X, tp) ~_ R l R~, 
where 

(8) 

R I =  ( l /V)  E exp(-ulj)  AVj, 
J 

Rs = ( l /V)  X exp(-gly)  AVj. (9) 
J 

In the above expression V is the volume of the crystal 
and lj and lj' are the path lengths of incident and 
diffracted beams corresponding to the volume element 
A V  1. 

(C) Method of Flack (1974) 

l(k,w,X,~) 
T'(k,w,X, tp) ~ (i(k,w, Z4p)), (10) 

where 
2~ 2n 2~ 

(I(k,w,X,~p)) = -~-~f  f f/(k,w,X,~P) do9 dx d~o. (11) 
0 0 0 

The procedures of KH and Flack are limited in their 
present form to four-circle diffractometers. In addition, 
they require rather complex interpolation schemes for 
evaluating, from the values of T'(k,w,X,~ p) of a limited 
number of absorption reflections, the transmission 
factors T'(h,co,X,~p) to be applied to intensities 
measured during a routine data-collection run. The 
choice of the reflections k needed in the last two 

procedures is not as restricted as in the method of 
NPM. The evaluation of I(k, og,x,~p), however, requires 
the use of at least four general equivalent reflections. 

(D) Method of Lee & Ruble (1977) 

This method (designated LR) is restricted to crystals 
having at least twofold symmetry and the adopted 
strategy is such that intensity measurements are made 
for those orientations of the crystal for which the 
optical paths of incident and diffracted beams of the 
absorption reflection and of the reflections to be 
corrected are the same. The procedure is based on the 
approximation proposed by KH and its application is 
limited to four-circle diffractometers. 

(E) Methods not based on azimuthal scans 

Katayama, Sakabe & Sakabe (1972) have reported 
a method for evaluating the three-dimensional trans- 
mission of the crystal based on statistical analysis of 
intensity differences of equivalent reflections. Xuong 
et al. (1978) used the intensities of equivalent reflections 
to correct data measured with an area detector. These 
methods, as well as that of Flack (1974), are limited to 
crystals with symmetry higher than monoclinic. 

The method of NPM is very simple from the experi- 
mental point of view, does not need elaborate and time- 
consuming computations and, in most cases, provides 
fairly accurate corrections. For these reasons, it has 
been extensively and successfully applied to protein 
data collection using four-circle and linear diffrac- 
tometers. The validity of the corrections calculated from 
(6) and (7), however, is limited to those cases in which 
the sample shape has approximately twofold symmetry 
about the rotation axis. If this condition is not satisfied, 
and if the crystal possesses at least one axis of twofold 
crystallographic symmetry, the problem can be quite 
well circumvented by applying the procedure proposed 
by LR. 

The main disadvantage of the other methods is that 
they require the use of a large number of absorption 
reflections and/or elaborate interpolation schemes to 
evaluate the transmission factors of general reflections. 
We have, therefore, limited our analysis to the absorp- 
tion corrections evaluated according to NPM and LR. 
These procedures have been extended specifically to the 
flat-cone geometry. However, they can also be applied, 
with little or no modification, to the normal-beam 
method or to the general Weissenberg case. This should 
prove particularly useful for diffractometers equipped 
with area detectors. 

Corrections in fiat-cone geometry 

The main problem in extending empirical corrections to 
Weissenberg methods other than the equi-inclination 
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arises because, in these configurations, incident and 
diffracted beams of a general reflection h do not lie on 
the same diffraction cone. In these cases, we may adopt 
two strategies to make the beam directions of the 
absorption reflection k as close as possible to the beam 
directions of the reflection h under study: (i) we may 
choose as reflection k one for which incident and 
diffracted beams lie on diffraction cones between 
those of the incident and diffracted beams of h, 
or (ii) we may use two reflections k to make the 
correction, one, ki, such that its diffraction cone 
is the same as that of the incident beam of h (or as 
close as possible to it), and the other, k:, such that its 
diffraction cone is the same as that of the diffracted 
beam of h (or as close as possible to it). For the flat- 
cone geometry, therefore, k~ is located on the level twice 
that of h, and kj is located on a level as close as possible 
to the zero level. 

The geometry involved in these choices is illustrated 
in Fig. 2 for the method of NPM. The extension of this 
method to case (i) is trivial and does not require any 
modifications of the equations previously derived. For 
case (ii), (6) is rewritten 

[ / l(k,)  /2(kj) .] 

T ' (h ,  co,z,q~) '~ 2/max(ki) + 2Imax(kj)J C, (12) 

where I i (k  t) and I2(kj) are the intensities of  k i and kj 
measured for those orientations of the crystal for which 
the projections of the mean directions of k~ and kj are 
coincident with the projections of the incident and 
diffracted beams of h respectively. The factor C 
appearing in (12) is constant for each level and does not 
need to be determined if the intensities in only one 
reciprocal-lattice level are being considered. However, 
if three-dimensional data are corrected with different 
combinations of k i and kj, then the resulting intensities 
have to be put on the same scale. This can be ac- 
complished with the following procedure. 

Let us indicate with h~, h2, ..., h, reflections located 
on levels 1, 2, . . . ,  n. By combining equations (2), (3) 
and (5), we may write* 

/obs(hs) = T'(hs) S(h s)/o(hs) = T"(hs) CsS(h s)/o(hs), 
(13) 

i.e. 

/o(hs)C, = bs=/obs (h , ) / IT" (hs )  S(h,)}. (14) 

The quantities b~, b2,..., b, are known. If we put 

C~r = CJC, . ,  . . . ,  C,,,. = C,,/C,., (15) 

* The angles o9, Z, ~0 at which a reflection h is measured are fixed 
once the crystal is oriented on the diffractometer and the technique 
and rotation axis are selected. T'(hs) = T"(hn)C s and Iobs(hs), 
therefore, should be taken to imply T'(hs, co,Z,~0) and Iobs(hs, co,Z,~0) 
restricted to the values of co, Z, ~0 imposed by the experimental 
conditions. Similarly, S(hs) implies that S(gR,h~) is restricted to the 
value ofgR of the experiment. 

equation (14) can be written 

Crlo(hs) = bs/Csr. (16) 

In (16), r indicates some convenient level chosen as a 
reference for the whole set of  intensities. Therefore, C r 
is a factor by which all intensities are multiplied and 
which, consequently, can be included in the overall 
scale factor. The quantity Csr, characteristic of  level s, 
can be estimated experimentally with the procedure 
outlined in Appendix I. 

As mentioned in the previous section, LR have 
proposed a method of  absorption correction which is 
particularly valuable in those cases in which the 
procedure of N P M  fails because the sample shape does 
not have twofold symmetry about the rotation axis. 
This method is restricted to crystals possessing at least 
a twofold axis of  crystallographic symmetry and is 
applicable to the Weissenberg geometry only if the 
symmetry axis is selected as the rotation axis. The 
principle of the method is illustrated in Fig. 3 in which 
A S  and S B  are the projections on the absorption plane 
(coincident with the plane of figure) of incident and 
diffracted beams for a reflection h represented by the 
reciprocal node B. The projections of incident and 
diffracted beams of the reflection h', related to h by the 
operation of the twofold axis, are D S  and SC,  respect- 
ively. If we adopt the approximation of K H  given in 
(8), we may  write 

/obs(h) = R(AS) R(SB) S(h)/o(h)) 

/ ° b s ( h ' ) = R ( D S ) R ( S C ) S ( h ) / ° ( h )  ) (17) 

Let us now choose as absorption reflection k I the 
axial reflection whose beam directions lie on the 
diffraction cone of A S  and S D  and let us measure its 

Fig. 2. Method of NPM for the flat-cone geometry. The rotation 
axis of the crystal is perpendicular to the plane of the figure at 
G. AS and SB are the incident and diffracted beams of the 
reflection h under study, located on level L The empirical trans- 
mission is evaluated from the intensities of two absorption 
reflections. A S and SG are the incident and diffracted beams of 
the first of them, located on level 21, and FS and SC are those of 
the second, located on a level as close as possible to level zero. 
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intensity for that orientation of the crystal for which we 
may write 

Iobs(ki) = R(AS) R(DS) S(ki) Io(ki). (18) 

As absorption reflection kj, let us select the .axial 
reflection located on the closest level to the level zero, 
and let us measure its intensity, so that we may write 

Iobs(kj) = R(ES) R(SF) S(kj) Io(kj) 

~-R(SC) R(SB) S(kj) Io(kj). (19) 

Combining equations (17), (18) and (19), we obtain 

I2(h) = [robs(h ) Iobs(h')/ lobs(ki)/obs(kj)] 

× IS(k) S(kj)/S'(h)l I0(k,) ~0(kj). (20) 

Equation (20) is the equivalent, in flat-cone geometry, 
of equation (6) in the paper by LR. The factor t0(k 3 x 
I0(kj) is unknown, but is constant for each level. If the 
intensities to be corrected belong to different levels, this 
factor has to be evaluated. The procedure to do this 
experimentally is given in Appendix II. It should be 
stressed that the scale factors determined experimentally 
with NPM or LR methods should be treated as refinable 
parameters since they could introduce systematic errors 
in the corrected intensities. 

Equations (12) and (20) show that two absorption 
curves per level are required to evaluate the corrections. 
One of them is the same for all levels, while the other 
changes from level to level. For crystals with large 
unit cells (i.e. with reciprocal nets close to one another), 
protein crystals in particular, two or three absorption 
curves may suffice for the whole data set. Thus, in 
general, the number of curves required by this method 
is not larger than that of NPM and LR. 

/ 

\ 
\ 

Fig. 3. Method of LR for flat-cone geometry. AS and SB are 
incident and diffracted beams of reflection h, and DS and SC 
those of h', symmetrically equivalent to h. AS and SD are the 
incident and diffracted beams of the first absorption reflection, 
and ES and SF those of the second. The levels of the absorp- 
tion reflections are chosen as in the previous case. 

The rotations needed to orient the crystal for the 
intensity measurements required for evaluating (12) 
and (20) can be calculated with the methods sum- 
marized in Appendix III. 

Tests of  the methods 

The transmission factors evaluated by employing the 
methods previously described have been tested by 
comparison with the results obtained analytically with 
the Gauss method of numerical integration (Busing & 
Levy, 1957). The crystal adopted in the tests is a right 
cylinder with an elliptical cross section of large eccen- 
tricity (e = 0.85 and more) and dimensions of 7.5, 
2.5 and 5 mm for the height of the cylinder and the 
minor and major axes of the ellipse. The conditions 
chosen for the tests were supposed to approximate 
those found in the neutron data collection on proteins. 
In most of the cases analyzed, the crystal size and the 
linear absorption coefficient were chosen to give #r  
1.5.* The reflections for which absorption corrections 
were calculated covered the range of resolution from 2.8 
to 1.8 A (/9= 17.5 to 27.6 °, 2 = 1.68 A). Lattice para- 
meters were arbitrarily chosen as a = 35.00, b = 37.16, 
c = 38.27 A, a =  f l=  7=  90 °, but their actual choice is 
immaterial in the application of the methods. 

Following the procedure of NPM, the 'experimental' 
absorption curves used to evaluate the empirical trans- 
mission factors were calculated with the Gaussian 
quadrature method in steps of 10 ° Of the rotation about 
the scattering vectors of the absorption reflections. 

To test the method of NPM, the empirical trans- 
mission factors were evaluated by means of the 
expression 

/ l ( k i ) / 2 ( k j )  ] 

2 ~ i )  + 2tmax(kj) S(h), (21) 

where tl(kt), t2(kj), tmax(kt) and tmax(kj) are the 
transmissions of the absorption reflections k t and kj 
read from the corresponding absorption curves at the 
appropriate values of the angle about the scattering 
vectors. The ratio, a, of these empirical values to those 
calculated with the Gaussian quadrature should be 
constant for each level. 

The method of LR was tested by evaluating the 
expression 

t(h) t(h') S(ki) S(kj)] 1/2 
t(ki) t(kj) S2(h) ' (22) 

where h and h' are two reflections related by the two- 
fold axis of crystallographic symmetry chosen as 
rotation axis of the crystal, t(kl) and t(k~) are, again, 

* r  = (1/2)~ or r = (3V/41r) v3, where ~ is the mean linear 
dimension of the crystal and V the crystal volume (Flack, 1974). 
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read from the absorption curves of kt and kj at the 
appropriate angles, and t(h) and t(h') are the true 
transmissions of h and h' calculated analytically for the 
geometrical situations under which the reflections were 
measured. The quantity (22) can be easily derived from 
(20). Its value should be equal to unity. 

The number of reflections used in each test varied 
between 30 and 60. As a measure of the dispersion 
from the average, t~, of the ratios evaluated by means of 
(21), or from unity in the case of expression (22), we 
adopted the mean absolute deviation divided by the 
mean and expressed as a percentage. Some results of 
these calculations are given in Table 1. 

Case (A) shows that, when the beam paths in the 
crystal are a smooth and slow-varying function of the 
angle/t (the angle/t is defined in Prince, Wlodawer & 
Santoro, 1978), reasonable values of the correction are 
obtained for all methods employed. The results show, 
however, that the procedure employing the two 
absorption reflections 0,0,2l + 001 has to be preferred 
to the ones making use of 0,0,2l or 001 only. On the 
other hand, the reflection 001 with a diffraction cone 
located between those of 0,0,2l and 001, gives results 
as good as 0,0,21 + 001. This is no longer true if the 
crystal orientation is such that the beam paths are not a 
slow-varying and smooth function of/t, as illustrated by 
case (B). In this case, the use of a single absorption 
reflection 001 gives unacceptably high deviations, while 

Table 1. Tests of the methods for evaluating 
empirically the absorption correction in the flat-cone 
geometry 

Mean Maximum 
Absorption deviation deviation 

Method reflections (%) (%) 

NPM (A) 0,0,2l + 001 1.3 5.3 
NPM (A) 0,0,2l 5.0 14.2 
NPM ('o 001 4.3 I 1.2 
NPM ('o 001 1.3 4.9 
LR ~A) 0,0,21 + 001 3.3 16.4 
NPM (m 0,0,2l + 001 2.1 8.6 
NPM (n) 00l 17.6 40.0 
NPM (c) 0,0,2I + 001 7.2 16.8 
NPM (m 0,0,21 + 001 16.1 30.7 
LR w) 0,0,21 + 001 3.4 16.6 

In all cases the rotation axis of the crystal was assumed to be 
[o011. 

(,4) Cylinder axis coincident with [0011. 
(B) Cylinder axis perpendicular to [001]; short axis of ellipse 

along [001 ]. 
(C) Cylinder axis coincident with [001]. The interaxial angles, in 

this case were assumed to be a = 105.0, fl = Y = 90°, so that the 
angle between [001] and the reciprocal row of the absorption 
reflections is 15 o. 

(D) Cylinder axis at approximately 45" from [0011. 
In cases (A), (B) and (D) the reciprocal row of the absorption 

reflections is coincident with [001]. 
In cases (A), (B) and (C) the sample has exact or approximate 

twofold symmetry about the rotation axis. 

the use of 0,0,2l + 001 gives corrections comparable to 
those obtained for the same method in case (A). 

The method of NPM gives satisfactory results in all 
situations in which the sample has exact or approximate 
twofold symmetry about the rotation axis of the crystal. 
This is true even if the rotation axis and the reciprocal 
row on which the nodes of the absorption reflections 
are located do not coincide. The results of case (C) were 
obtained by assuming an angle of 15 o between the two 
axes. If this angle is decreased, the mean and maximum 
deviations decrease from the values of 7.2 and 16.8% 
reported in Table 1. 

If the sample does not possess even approximate 
twofold symmetry about the rotation axis, as in case 
(D) reported in Table 1, the method of NPM cannot 
be used any longer, and the method of LR, if applicable, 
becomes the best alternative. 

In all previous calculations, the effect of the 29- 
dependent factor is small because the maximum change 
of 28 for the reflections considered does not exceed 
about 20 ° . This situation is typical in the study of 
crystals with large unit cells. 

Expressions (21) and (22) have been derived by 
making use of approximations and assumptions which 
are valid only if the linear absorption coefficient and the 
size of the crystal are small. The values of the mean and 
maximum deviations reported in Table I were calculated 
with # = 0.3 mm-L For the geometry of case (A), and 
with/t = 0.6 mm -~, the mean deviation becomes 6.5% 
for the method of NPM and 14.3 % for the method of 
LR, and with/t = 0.8 mm -~ these values become 10.9 
and 24.5%, respectively. Similar results are obtained 
when the eccentricity of the cylinder is increased. In 
these cases, as expected, the empirical transmission 
factors are particularly poor for those reflections whose 
beams travel along the long direction of the crystal. 

In all cases in which the sample has twofold symmetry 
about the rotation axis, the method of NPM gives better 
results than those obtained with the method of LR. This 
is almost certainly due to the fact that the approximation 
of KH, used in the method of LR, is valid only for low 
values of/~r. 

The previous discussion on the results of the calcu- 
lations of empirical absorption corrections in flat-cone 
geometry permits us to draw the following conclusions. 

(i) It is always preferable to evaluate the transmission 
factors of the reflections located on each level of the 
reciprocal lattice by using two properly selected 
absorption reflections rather than one. This conclusion 
applies also to those cases in which the shape of the 
sample does not vary abruptly with/t. 

(ii) The sample should be prepared so that it has, at 
least approximately, a twofold axis of symmetry, and it 
should be mounted on the diffractometer in such a way 
that the crystal can be rotated about a zone axis 
coincident with that axis, or about a zone axis as close 
as possible to it. 
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(iii) If the crystal possesses at least a twofold axis of 
crystallographic symmetry, it is not necessary to satisfy 
the conditions outlined in (ii). In this case, however, the 
sample should be mounted on the diffractometer so that 
the Weissenberg rotation can take place about the axis 
of symmetry. 

The above conclusions were derived for flat-cone 
geometry. They are valid, however, for all the 
Weissenberg methods in which the diffraction cones of 
incident and diffracted beams are different (normal- 
beam, equal-cone and the general case). In fact, even the 
corrections in the equi-inclination method can be 
considered as particular cases of the general treatment 
given previously. 

The use of a three-circle goniometer to provide the 
needed rotation of the crystal confers considerable 
flexibility on a diffractometer operating in flat-cone or 
any other Weissenberg geometry. In fact, with such a 
device it is possible to change the rotation axis without 
having to dismount the crystal, which is a great 
advantage in selecting the best geometrical conditions 
for absorption corrections. If the diffractometer does 
not have a three-circle goniometer, and the crystal is 
rotated by means of a single circle, as in some diffrac- 
tometers equipped with area detectors, the measure- 
ments needed for evaluating absorption corrections 
cannot be carried out. In this case it is necessary to 
make such measurements with a conventional four- 
circle diffractometer before or after collecting the data 
with the area detector. This procedure may be 
followed in any case to avoid inefficient use of 
diffractometers equipped with position-sensitive 
detectors. 

All computer programs used in this study, including 
programs for application of absorption correction to 
experimental data, are available upon request from 
the authors. 

In the above expression, a represents s or r; k a are the 
absorption reflections of s and r; and the meaning of 
the other symbols has been given previously. Let us 
now re-measure the intensities of rest and re,t, again 
with the equi-inclination method, but by rotating the 
crystal about the zone axis perpendicular to the level t. 
By applying once more the transmission given by (6), 
we obtain 

11(kt.ma t) + I2(kt,ma t) 
I 'bs(mat ) = C t 10(mat) S(mat), 

2Imax(kt) 
(,42) 

w h e r e  Ii(kt, mat) and I2(kt, mat) a r e  the intensities of k t 

measured for those orientations of the crystal for which 
the mean direction of k t is coincident with the 
projections of the incident and diffracted beams of mat 
respectively. Calling 

I~(k s) + I2(ks) 
A(ks) = etc., (A3) 

2/max(ks) 

we obtain 

Iobs(m,~t) A(kt.  mat) 
Cat = Ca/C t = . (A4) 

I'bs(mat) A(ka) 

It follows that 

Csr--- Cs/Crt 

- -  [ I o b s ( m s t )  I~bs(mrt)/I~bs(mst) Iobs(mrt)] 
× [A(kt, ms t) A(kr)/A(ks) A(kt.mrt)]. (AS) 

Equation (A5) is the desired expression for evaluating 
Csr since all quantities in the right member can be 
measured with the described procedures. If rest and tort 
are symmetrically equivalent, then 

APPENDIX I 

Evaluation of Cs, 

Let us consider a reciprocal net t, intersecting 
the parallel nets s and r and let us call k t the absorption 
reflection of t (according to our definitions, the node k t 

belongs to t and it lies on a central reciprocal row 
perpendicular to t, if such a row exists, or on a row as 
close as possible to the zone axis perpendicular to t). 
Let us consider the nodes rest and tort chosen so that 
ms~ belongs to both levels s and t and tort t o  both r and 
t. If we measure these two reflections with the equi- 
inclination method when the crystal is being rotated 
about the zone axis perpendicular to s and r, we may 
use the correction given by (6) and write 

Ii(ka) + 12(ka) 
lobs(mat) = C a l o ( m a t )  S(mat)" (A1) 

2Imax(ka) 

I0(mst) = I0(mrt), S(m, t )=  S ( m ,  t) (A6) 

and from equations (A 2), we obtain 

I'obs(mrt ) _ a (k t ,  tort) 

l"bs(mst) A (kt, mst) 
(A7) 

From equation (A 5) we have, then, 

lobs(rest) A(k,) 

Csr = lobs(tort) A(ks ), (A8) 

i.e., in this case the use of the intersecting net t is not 
necessary for determining Csr. 

Since the method of NPM should be applied for 
samples with twofold symmetry about the rotation axis, 
the previous method will give reliable results only for 
samples having this symmetry about axes coincident 
with k a and k t. 
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A P P E N D I X  II 

Evaluation of Io(ki) Io(kj) 

Let us consider a reciprocal net t intersecting both nets 
i and j and perpendicular to these nets and let us call 1 
the absorption reflection of t. With reference to Fig. 2 in 
the paper by LR, let us consider the intensity 
measurements made for those orientations of the 
crystal for which we may write 

Ie(kt) = R(1) R( I ' )  S(k t) Io(kt), 

Ic(ki) = R(1.) R( i ' )  S(k l) Io(kt), 

11(i)= R(1) R( i )  S(1)1o(I), 

I,(1') = R(I ' )  R( i ' )  S(I) lo(I), (A9) 

and similar equations for level j. From the first set of 
equations we may derive I0(k t) and from the second 
I0(kj). From these solutions, we readily obtain 

Io(ki) Io(kj) = [Ic(ki) Ic(fCt)/Ii(1) Ii(I ')]  1/2 

x [Ic(kj) Ic(fcj)/I2(I) 120')11/2 
X [S2(1)/S(k ") S(ki)]/02(1) • (Ai0) 

The factor 12(1) is unknown. However, it is the same for 
all reflections and it can be incorporated in the overall 
scale factor. 

A P P E N D I X  III 

Diffractometer settings for absorption corrections 

A fiat-cone diffractometer utilizing a linear position- 
sensitive detector has been described by Prince, 
Wlodawer & Santoro (1978), designated PWS in what 
follows. In this instrument, use is made of a four-circle 
assembly to produce the conditions required by the 
fiat-cone geometry. Procedures for calculating the 
settings of the instrument required for rotating the 
crystal about a zone axis or a scattering vector have 
been described by PWS and by Busing & Levy 
(1967). Here we give only concepts and expressions 
useful in the evaluation of the empirical absorption 
corrections. 

In addition to the reference systems defined in PWS, 
it is convenient to introduce here a new Cartesian 
reference system (OXYZ)A attached to the reciprocal 
lattice and defined in the following way. Consider an 
absorption reflection with components, on the reciprocal 
axes, given by 

k =  k 2 • ( A l l )  

Select a second reflection 

noncollinear with k. This second reflection is used to fix 
the zero of the rotation about the reciprocal-lattice 
vector k. Now we may define the reference system by 
means of the equations 

OXA = k/Ikl, 

= (k × 0k) / (Ik  × 0kl), 

OY~= OZ A x OXA. (A13) 

Clearly, each absorption reflection has its own 
reference system associated with it, except when these 
reflections are coUinear. The absorption plane defined 
in one of the previous sections is the plane defined by 
the vectors OY~ and OZ~. A point of coordinates 

x =  x2 (A14) 

X3 
on the reciprocal axes, is transformed in (OXYZ)A by 
the equation 

x A = U' Bx, (A 15) 

where matrix B is the same as that used in PWS and its 
expression has been given elsewhere (Santoro & 
Zocchi, 1964; Busing & Levy, 1967). Matrix U' can be 
easily derived, with a method similar to that described 
by Busing & Levy (1967), by finding the components 
of the vectors OXA, OYa and OZ a in the Cartesian 
reference system (OXYZ) c attached to the reciprocal 
lattice as described by Busing & Levy (1967) or 
Santoro & Zocchi (1964). 

Let us consider a point of coordinates 

[xl  
XL = IX2~ I X3 (A16) 

in a Cartesian system attached to the laboratory. The 
coordinates x A in the system (OXYZ) A are then given 
by 

xA = ~ X2A~ = U' 0 ill ~ ~ 1~1XL. (A17) 

\x3,,/ 
Suppose now that the direction cosines of the incident 
and diffracted beams of a reflection h are Tk and 8L, 
respectively, in the reference system attached to the 
laboratory. By means of (A 17) we can readily obtain 



450 ABSORPTION C O R R E C T I O N  FOR WEISSENBERG D I F F R A C T O M E T E R S  

the corresponding direction cosines rla and 8a in the 
reference system (OXYZ)  A. The projections on the 
absorption plane of the two beams and of their mean 
direction are characterized by the angles 

1]3A(h) 
tan eine. (h) = ~z4(h), (A 18) 

and 

63A(h) 
tan edtffr ' (h) - - -  (A 19) 

J2A(h) 

tan 6mean (h) = t]3A(h) + 63A(h) (A20) 
TieA(h) + 62~(h)" 

From these angles we may easily calculate the values of 
the azimuth at which the absorption reflection k has to 
be measured to carry out the absorption correction 
with one of the methods analyzed and, from these, the 
settings of the diffractometer required for the 
measurement. 
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Abstract I. Introduction 

The temperature dependence of sharp and diffuse c and 
d reflections in pure anorthite was investigated by 
X-ray and neutron measurements from room tem- 
perature up to 700 K. At 513 + 4 K a complete, 
reversible and continuous phase transition PI-11  can 
be observed. Here the diffuse scattering reaches a 
maximum. It has a remarkable anisotropy along the b* 
and (a* - b*) directions. All experimental findings as 
well as the formation of an antiphase domain structure 
can be explained by a simple dynamical model. 

0567-7394/80/030450-11501.00 

Feldspars have been investigated very frequently 
and many publications exist on this topic (see, for 
example, Smith, 1974). In the case of plagioclases 
(CaxNal_x[All+xSia_xOs]), which are the subject of 
our investigation, the structure of the end members, 
anorthite (x = 1) and albite (x = 0), are rather well 
known. Yet with the intermediate members new 
structures and disorder structures occur, e.g. antiphase 
domains and exsolutions, which considerably compli- 
cate the structural interpretation (Jagodzinski & 
© 1980 International Union of Crystallography 


